
Teacher Training
Package





1 T E AC H E R  T R A I N I N G  PAC K AG E

Introduction:
What’s Inside this Package?
This package is designed for educators who will be training Grade 6 to 9 teachers 

to support student learning in computational thinking and coding. Computational 

thinking is a content module in the new Applied Design, Skills, and Technologies 

(ADST) curriculum from Grades 6 to 8. In Grade 9, the ADST curriculum offers 

text-based coding within the Information and Communications Technologies (ICT) 

content module.

In particular, this package includes student learning resources for Grade 6 to 9 

teachers to support computational thinking and coding in the classroom. The 

resources are also designed to reinforce the core competencies in the redesigned BC 

curriculum, as well as the big ideas and curricular competencies specifically in the 

ADST curriculum.

The student learning resources are organized into 2 units:

1. Introduction to Computational Thinking

2. Continuing Explorations

Each unit includes the following:

 · Up to 10 hours of instructional time

 · Sequential lesson plans and student activities

 · A project-based activity

 · Assessments

In support of these resources, this package provides information that you can use 

to supplement your understanding of the content. First, it gives a brief overview 

of the core competencies in the redesigned BC curriculum. It then focuses on the 

ADST curriculum and explores how computational thinking is not only in the ADST 

curriculum, but also evident in other learning areas across the BC curriculum. Lastly, 

it introduces computational thinking as a set of strategies for solving problems, and 

discusses how computational thinking is related to coding.

In addition to the above materials, this package outlines an approach methodology 

for building your training workshops in your own districts and schools. It also 

includes guidelines and resources to help you support teachers in adopting 

computational thinking in their practice.

To summarize, this package consists of the following sections:

 · BC Curriculum Overview

 · Why Computational Thinking?

 · Approach to Training Workshops

 · Further Resources



2 T E AC H E R  T R A I N I N G  PAC K AG E

BC Curriculum Overview 
The redesign of the BC curriculum implemented in 2016 emphasizes personalized, 

competency-driven, concept-based learning. At the heart of the competencies are 

the core competencies, which are embedded in all learning areas:

. Creative Thinking . Critical Thinking . Communication

. Positive Personal and 

Cultural Identity

. Personal Awareness 

and Responsibility

. Social Awareness 

and Responsibility

Within each learning area, there are three elements that follow the 

Know-Do-Understand model:

 · Content, what students are expected to know

 · Curricular Competencies, what students are expected to do

 · Big Ideas, what students are expected to understand

Applied Design, Skills, and 
Technologies Curriculum Overview
The new Applied Design, Skills, and Technologies (ADST) curriculum is an experiential, 

hands-on program, where students learn through making. 

Big Ideas
The Big Ideas capture the practices of applying design processes, skills, and 

technologies involved in the making process. The Big Ideas for Grades 6 to 9 are 

shown below.

Big ideas Grades 6 to 8 Grade 9

Applied Design Design can be responsive to 
identified needs.

Social, ethical, and 
sustainability 
considerations impact 
design.

Applied Skills Complex tasks require the 
acquisition of additional 
skills.

Complex tasks require the 
sequencing of skills.

Applied Technologies Complex tasks may 
require multiple tools and 
technologies.

Complex tasks require 
different technologies and 
tools at different stages.



3 T E AC H E R  T R A I N I N G  PAC K AG E

Curricular Competencies
The Curricular Competencies further define the practices outlined in the Big Ideas, 

and in general, are categorized under the following stages of the making process:

. Understanding 
Context

. Defining . Ideating

. Prototyping . Testing . Making

. Sharing

The table below lists the Curricular Competencies for Grades 6 to 9 that fall under 

each stage.

Grades 6 to 8 Grade 9

Understanding 
Context

Empathize with potential 
users to find issues and 
uncover needs and potential 
design opportunities.

Engage in a period of research 
and empathetic observation 
in order to understand design 
opportunities.

Defining Choose a design 
opportunity.

Identify key features or 
potential users and their 
requirements.

Identify criteria for success 
and any constraints.

Choose a design opportunity.

Identify potential users and 
relevant contextual factors.

Identify criteria for success, 
intended impact, and any 
constraints.

Ideating Generate potential ideas 
and add to others’ ideas.

Screen ideas against criteria 
and constraints.

Evaluate personal, social, 
and environmental impacts 
and ethical considerations.

Choose an idea to pursue.

Take creative risks in generating 
ideas and add to others’ ideas in 
ways that enhance them.

Screen ideas against criteria and 
constraints.

Critically analyze and prioritize 
competing factors, including 
social, ethical, and sustainability 
considerations, to meet 
community needs for preferred 
futures.

Choose an idea to pursue, keeping 
other potentially viable ideas open.



4 T E AC H E R  T R A I N I N G  PAC K AG E

Prototyping Identify and use sources of 
information.

Develop a plan that identifies 
key stages and resources.

Explore and test a variety of 
materials for effective use.

Construct a first version of 
the product or a prototype, as 
appropriate, making changes 
to tools, materials, and 
procedures as needed.

Record iterations of 
prototyping.

Identify and use sources of 
inspiration and information.

Choose a form for prototyping and 
develop a plan that includes key 
stages and resources.

Evaluate a variety of materials 
for effective use and potential 
for reuse, recycling, and 
biodegradability.

Prototype, making changes to 
tools, materials, and procedures as 
needed.

Record iterations of prototyping.

Testing Test the first version of the 
product or the prototype.

Gather peer and/or user 
and/or expert feedback and 
inspiration.

Make changes, troubleshoot, 
and test again.

Identify sources of feedback.

Develop an appropriate test of the 
prototype.

Conduct the test, collect and 
compile data, evaluate data, and 
decide on changes.

Iterate the prototype or abandon 
the design idea.

Making Identify and use appropriate 
tools, technologies, and 
materials for production.

Make a plan for production 
that includes key stages, and 
carry it out, making changes 
as needed.

Use materials in ways that 
minimize waste.

Identify and use appropriate 
tools, technologies, materials, and 
processes for production.

Make a step-by-step plan for 
production and carry it out, 
making changes as needed.

Use materials in ways that 
minimize waste.



5 T E AC H E R  T R A I N I N G  PAC K AG E

Sharing Decide on how and with 
whom to share their product.

Demonstrate their 
product and describe their 
process, using appropriate 
terminology and providing 
reasons for their selected 
solution and modifications.

Evaluate their product 
against their criteria and 
explain how it contributes 
to the individual, family, 
community, and/or 
environment.

Reflect on their design 
thinking and processes, and 
evaluate their ability to work 
effectively both as individuals 
and collaboratively in a group, 
including their ability to share 
and maintain an efficient 
cooperative work space.

Identify new design issues.

Decide on how and with whom to 
share their product and processes.

Demonstrate their product to 
potential users, providing a 
rationale for the selected solution, 
modifications, and procedures, 
using appropriate terminology.

Critically evaluate the success of 
their product, and explain how 
their design ideas contribute to 
the individual, family, community, 
and/or environment.

Critically reflect on their design 
thinking and processes, and 
evaluate their ability to work 
effectively both as individuals 
and collaboratively in a group, 
including their ability to share and 
maintain an efficient cooperative 
work space.

Identify new design issues.

Content
Finally, here are the computational thinking and coding content learning standards from 

Grades 6 to 9 supported by the student learning resources.

Computational Thinking and Coding Content Learning 

Standards

Grades 
 6 to 7

 · Simple algorithms that reflect computational thinking

 · Visual representations of problems and data

 · Visual programming

Grade 8  · Software programs as specific and sequential instructions 

with algorithms that can be reliably repeated by others

 · Debugging algorithms and programs by breaking 

problems down into a series of sub-problems

Grade 9  · Text-based coding



6 T E AC H E R  T R A I N I N G  PAC K AG E

Computational Thinking in the BC Curriculum
In the redesigned BC Curriculum, computational thinking is part of the content 

learning standards for ADST from Grades 6 to 8. In Grades 6 to 7, computational 

thinking includes simple algorithms that reflect computational thinking, and visual 

representations of problems and data, and in Grade 8, computational thinking 

involves debugging algorithms by breaking problems down into a series 

of sub-problems.

While these computational thinking concepts are part of ADST, they are also evident 

in other learning areas across the BC curriculum. For example, in Arts 6 and 7, 

combining notations in music and dance to form sequences is an example of creating 

simple algorithms. 

The tables below provide examples of Grade 6 to 8 learning standards from other 

subject areas that correspond to ADST learning standards.

Grade 6 Learning Standards

Subject Learning Standard
Link to ADST 

Learning Standard
Example

Arts Notation in music and 
dance to represent 
sounds, ideas, 
movement, elements, 
and actions

Notations combined 
in a sequence is an 
example of a simple 
algorithm.

Writing a sequence of 
notes to represent a 
musical phrase.

English 
Language Arts

Language features, 
structures, and 
conventions; 
specifically 
paragraphing

Developing paragraphs 
that are characterized 
by unity, development, 
and coherence 
is analogous to 
developing simple 
algorithms.

Starting a paragraph 
with a topic sentence 
followed by body 
sentences and a 
concluding sentence.

Mathematics Model mathematics 
in contextualized 
experiences

Acting it out; using 
concrete materials 
(e.g., manipulatives); 
drawing pictures, 
diagrams, tables and 
graphs create visual 
representations of 
data.

Using cubes to 
build 3D objects 
and determine their 
volume.



7 T E AC H E R  T R A I N I N G  PAC K AG E

Order of operations 
with whole numbers

Order of operations is 
a simple algorithm for 
evaluating expressions.

For any expression, 
evaluating groupings 
within brackets first, 
then multiplying and 
dividing, and adding 
and subtracting.

Physical 
and Health 
Education

How to participate 
in different types of 
physical activities, 
including individual 
and dual activities, 
rhythmic activities, 
and games

Games usually involve 
rules that are simple 
algorithms.

In basketball, if a 
player makes a basket 
outside the three-
point line, the player 
scores three points. 
Within the three-point 
line, the player scores 
two points. And if 
the player makes a 
free throw, the player 
scores one point.

Science Construct and use a 
variety of methods, 
including tables, 
graphs, and digital 
technologies, as 
appropriate, to 
represent patterns or 
relationships in data.

Representing patterns 
or relationships 
creates visual 
representations of 
data.

Creating a 3D model 
or drawing an image 
of the solar system to 
illustrate the positions 
of planetary objects 
relative to one another.

The basic structures 
and functions of body 
systems:

 · excretory

 · reproductive

 · hormonal

 · nervous

Functions of body 
systems follow simple 
algorithms.

Describing the role 
of the brain, spinal 
cord, and receptors in 
interpreting external 
signals.

Social Studies Use Social Studies 
inquiry processes 
and skills to - ask 
questions; gather, 
interpret, and 
analyze ideas; and 
communicate findings 
and decisions

Locate and map 
continents, oceans, and 
seas using simple grids, 
scales, and legends; and 
represent the same 
information in two or 
more graphic forms 
(e.g., graphs, tables, 
thematic maps) are 
examples of creating 
visual representations 
of problems and data.

Representing the 
results of a federal 
election by creating 
a bar graph as well 
as a thematic map of 
Canada.



8 T E AC H E R  T R A I N I N G  PAC K AG E

Sequence objects, 
images, or events, and 
recognize the positive 
and negative aspects 
of continuities and 
changes in the past 
and present  
(continuity and 
change)

Sequencing is 
fundamental to 
creating simple 
algorithms.

Order the events 
leading up to a conflict, 
and the steps, if any, 
taken to resolve the 
conflict.

Grade 7 Learning Standards

Subject Learning Standard
Link to ADST 

Learning Standard
Example

Arts Notation in music and 
dance to represent 
sounds, ideas, 
movement, elements, 
and actions

Notations combined 
in a sequence is an 
example of a simple 
algorithm.

Writing a sequence of 
symbols to represent 
position and movement 
in a dance.

English 
Language Arts

Language features, 
structures, and 
conventions; 
specifically 
paragraphing

Developing paragraphs 
that are characterized 
by unity, development, 
and coherence is 
analogous developing 
simple algorithms.

Starting a paragraph 
with a topic sentence 
followed by body 
sentences and a 
concluding sentence.

Mathematics Model mathematics 
in contextualized 
experiences

Acting it out; using 
concrete materials 
(e.g., manipulatives); 
drawing pictures, 
diagrams, tables and 
graphs create visual 
representations of data.

Drawing circle 
graphs to represent 
percentages, fractions, 
and ratios.

Two-step equations 
with whole-number 
coefficients, constants, 
and solutions

The process for solving 
two-step equations is a 
simple algorithm.

Solving and verifying 
3x + 4 = 16 requires 
techniques to preserve 
the equality.



9 T E AC H E R  T R A I N I N G  PAC K AG E

Physical 
and Health 
Education

How to participate 
in different types of 
physical activities, 
including individual and 
dual activities, rhythmic 
activities, and games

Games usually involve 
rules that are simple 
algorithms.

In basketball, if a 
player makes a basket 
outside the three-point 
line, the player scores 
three points. Within 
the three-point line, 
the player scores two 
points. And if the player 
makes a free throw, the 
player scores one point.

Science Collaboratively plan a 
range of investigation 
types, including 
fieldwork and 
experiments, to answer 
their questions or solve 
problems they have 
identified

Planning an 
investigation requires 
determining a 
sequence of steps 
similar to developing a 
simple algorithm.

Designing an 
experiment to 
determine the 
crystalline structure of 
salt or sugar.

Construct and use a 
variety of methods, 
including tables, graphs, 
and digital technologies, 
as appropriate, to 
represent patterns or 
relationships in data.

Representing patterns 
or relationships creates 
visual representations 
of data.

Constructing a table to 
illustrate the changes 
in harvesting dates due 
to climate change.

Social Studies Use Social Studies 
inquiry processes and 
skills to: ask questions; 
gather, interpret, and 
analyze ideas; and 
communicate findings 
and decisions

Demonstrate an 
ability to interpret 
scales and legends in 
graphs, tables, and 
maps (e.g., climograph, 
topographical map, pie 
chart); and select an 
appropriate graphic 
form of communication 
for a specific purpose 
requires visual 
representations of 
problems and data.

Drawing a map to show 
the migration of early 
humans out of Africa to 
the rest of the world.



10 T E AC H E R  T R A I N I N G  PAC K AG E

Grade 8 Learning Standards

Subject Learning Standard
Link to ADST 

Learning Standard
Example

Mathematics Apply multiple 
strategies to 
solve problems in 
both abstract and 
contextualized 
situations; and develop, 
demonstrate, and 
apply mathematical 
understanding through 
play, inquiry, and 
problem solving

Solving mathematical 
problems often 
involves breaking the 
problems down into a 
series of sub-problems 
similar to debugging.

Using proportional 
reasoning to figure out 
which is the better deal 
when given the cost of 
two or more products.

Science Identify possible 
sources of error and 
suggest improvements 
to their investigation 
methods

Identifying possible 
sources of error is 
ultimately debugging 
and requires breaking 
their investigation 
methods down into 
smaller steps.

Looking at each step 
of an experiment and 
reflecting on how 
an error might be 
introduced.



11 T E AC H E R  T R A I N I N G  PAC K AG E

Why Computational Thinking?
One major objective of the redesigned BC Curriculum is to build students’ core 

competencies in thinking, communication, and personal and social abilities in order 

to help students engage in deeper learning as well as life-long learning. In particular, 

creative thinking and critical thinking are core competencies that allow students to 

generate new ideas that are valuable to others and make judgements based 

on reasoning. 

Computational thinking complements creative thinking and critical thinking. It allows 

students to solve complex problems. It involves looking at problems from different 

perspectives to develop potential solutions. When engaged in computational 

thinking, students may exercise one or more of the following strategies:

Strategy Definition

Decomposition Breaking something down into smaller pieces

Pattern recognition Finding similarities between things

Abstraction Removing unnecessary details

Algorithms Sequencing of events

Computational thinking strategies are useful in all areas of learning, but they manifest 

themselves differently in each discipline. On one hand, students may use decomposition 

to break down a math problem into smaller pieces so that it’s easier to solve. On the 

other hand, they may use decomposition to break down the elements of a story or text to 

gain deeper understanding of different forms and genres.

In programming or coding, computational thinking allows students to solve problems 

such that the solutions can be carried out by computers. It allows students to not only 

use, but also take control of technology to express their ideas and solutions. Furthermore, 

the coding process is highly iterative. Students will inevitably make mistakes when they 

write their code; however, they are able to quickly see the results, make changes, and 

iterate until they have their desired effect. Coding provides a safe environment to fail, 

and ultimately, builds resilience.



12 T E AC H E R  T R A I N I N G  PAC K AG E

Approach to Training Workshops
Presenting Strategies
For the most part, participants in workshops are going to fall into two distinct groups. 

The first group will embrace computational thinking because they already have a 

solid familiarity with technology. The second group is more likely to express some 

skepticism and ambivalence.

Consistently, it has been demonstrated that the best way to bridge the gap between 

the facilitator and the second group is to present a conceptual map that feels familiar 

to teachers who may not consider themselves skilled at computation. Presenting 

computational thinking strategies in the context of how they already exist in 

everyday life helps build confidence and openness to how humans naturally compute 

solutions to problems every day. Computational thinking strategies are strengthened 

by the curricular competencies. The competencies are often easier to embrace 

because these are, for the most part, terms we already use. 

To many people, computational thinking strategies sound like jargon. It is best to 

address this directly, and let participants know that these kinds of words often 

trigger insecurities, or what is known to psychologists as “impostor syndrome,” a 

feeling of being overwhelmed by new information that makes everyone less receptive 

to new ideas. Impostor Syndrome instills a sense that the participant isn’t qualified 

or competent enough to accomplish the goal presented to them. But in truth, we put 

computational thinking strategies into practice often in our roles as educators, but 

also just as human beings.

Algorithms:

The sequence of events that lead from problem to solution. We have these in our 

everyday lives. Recipes, to-do lists, instructions to assemble furniture, and knitting 

patterns. These are all examples of algorithms, a sequence of events that, if followed, will 

lead from problem to solution reliably.

Pattern Recognition:

This is how we recognize faces, landmarks, and Wheel of Fortune clues. Our mind’s ability 

to understand a pattern in data allows us to build algorithms that provide insights.



13 T E AC H E R  T R A I N I N G  PAC K AG E

Decomposition:

Decomposition is the process of breaking down a complicated process into its 

component parts. Cleaning a messy room one section at a time or in timed increments is 

one example that might resonate well with middle schoolers. Quite often, this is how we 

create algorithms. And equally often, the process of breaking down a process leads to 

pattern recognition.

Abstraction:

We use abstraction when we allow one thing to represent another. In Algebra, we are 

all familiar with the concept of ‘x’ being an arbitrary value; but further from that, we 

know that red means stop, green means go, and a sale at the electronics store means we 

need to put money on our credit card. We have abstracted the meanings of these events 

and symbols so that we understand that they represent another series of actions. We 

abstract when we present the idea of a thing with a few well-chosen terms or symbols. 



14 T E AC H E R  T R A I N I N G  PAC K AG E

Linking Strategies to Curricular Competencies
By bridging the gap between the ADST curriculum and everyday practices, a 

contract is created between facilitator and participant to find success in the process 

of learning the new material. Computational strategies are strengthened and 

assimilated by being put into practice with the ADST curricular competencies. Some 

examples include: 

Ideating and Testing

We are always trying new things. What happens if I do _____? We try a process, and 

see if it works. We are testing algorithms when we do this. 

Sharing and Collaborating

The unsung hero of computational thinking, collaboration allows us to pair our 

perception of the problem and solution with others and get insights. Allowing 

ourselves to take input from others, particularly when they are recognizing patterns, 

decomposing the solution from their own experience, and using their own debugging and 

experimentation practices, allows us to come to a solution far more quickly.

Prototyping, Defining and Planning

We have all heard the saying ‘proper planning prevents poor performance’. Planning 

means ensuring that the choices made in the building of an algorithm make sense, and 

the abstractions and experimentation techniques are all solid, and ultimately predict 

what the outcome will be based on the decisions. This is how we approach problem-

solving in our lives each and every day, designing and defining solutions for ourselves and 

others.

Making

Once we have put computational thinking into practice, we gain not only the ability to 

solve problems, but  new ways to express ourselves, whether it’s using algorithms to tell 

stories, using abstraction to make animation, or logic to make games.



15 T E AC H E R  T R A I N I N G  PAC K AG E

Big Ideas
By putting strategies into practice, the big ideas are naturally seeded.  Ultimately a 

main goal of developing good computational thinking skills is to facilitate the learning 

process. Once again:

Big Ideas Grade 6 to 8 Grade 9

Applied Design Design can be responsive 
to identified needs.

Social, ethical, and 
sustainability 
considerations impact 
design.

Applied Skills Complex tasks require the 
acquisition of additional 
skills.

Complex tasks require the 
sequencing of skills.

Applied Technologies Complex tasks may 
require multiple tools and 
technologies.

Complex tasks require 
different technologies and 
tools at different stages.

Application
It is highly recommended that the concept of ‘code’ be addressed separately from 

‘computational thinking’. Computational thinking is only a method for solving a 

problem, whereas code is how we tell computers what to do. They are not the 

same thing and require different approaches. Code is only one aspect of the ADST 

curriculum, and is not introduced until grade 6, through simple visual programming.

Whereas students and teachers alike can benefit from the introduction of 

computational thinking practices throughout the curriculum, in any grade or subject.

The ADST curriculum is designed to guide a student through the process of first 

acquiring computational thinking strategies, then introducing them to visual 

programming, and only introducing text-based coding at later grade levels.



16 T E AC H E R  T R A I N I N G  PAC K AG E

Workshop Itinerary Proposal
Here is a proposed outline and itinerary for doing a Computational Thinking (CT) 

workshop in your respective schools and districts. One of the approaches that has 

proven the most effective is getting participants to be hands-on with the material, 

following it up with discussion and reflection. The proposal below is for a 4-hour 

workshop; however, should you have more time available there are some notes below 

for extending the material.

We recommend starting workshops with introductions and a “Shape of the Day” 

outline so that attendees have expectations set appropriately. Each session should 

end with an introduction to the Discourse resource.

Hour 1
Ping-Pong Rescue activity from the first unit of the Student Learning Module. 

(60 - 75 minutes)

1. Divide the attendees up into groups and have them perform the activity. This will 

serve as a good icebreaker and set the mood for the rest of the session. (45 minutes)

2. Follow up with a “hook”, connecting the lessons learned and competencies 

explored in the Ping-Pong activity to the ADST curriculum. (15 - 30 minutes)

Hour 2
Discussion (60 minutes)

1. How does CT exist in everyday life / classroom settings ALREADY. (15 - 20 minutes)

2. For each content component of CT (Decomposition, Abstraction, Pattern 

     Recognition, and Sequencing), get teachers to work with their groups (one by one) 

     to make connections to their current practice. (30 - 45 minutes)

Hour 3 
Module Overview (60 minutes)

      1. Module 1 (25 minutes)

      2. Module 2 (25 minutes)

      3. Emphasis on multi-disciplinary/cross-curricular application/implementation    

           (10 minutes)



17 T E AC H E R  T R A I N I N G  PAC K AG E

Hour 4
Reflection (30 minutes)

1. Reflecting on integration of computational thinking into current curriculum and  

     teaching practice

      2. If time allows, opportunity to reflect after each module overview session, with  

           additional reflection around cross-curricular use 

 

District-specific or school-specific Q&A (30 minutes)

1. Assessment expectations

2. Prep expectations for new curriculum

3. Addressing concerns over new curriculum potentially disrupting previous  

     lesson  allotments

Extended Sessions
Here are some options for extending the session if time allows:

1. Use the Jeopardy resource that was introduced at the Provincial Workshops. 

2. Have participants explore either the Kahoot! or Twine activities from 

     the Student Learning Module.

3. Get participants to reflect on rubrics for assessing computational thinking.

4. Explore concepts of multi-disciplinary and cross curricular implementation  

     of the CT content.



18 T E AC H E R  T R A I N I N G  PAC K AG E

Further Resources
Learn to Code, Code to Learn, Mitchel Resnick, EdSurge

https://www.edsurge.com/news/2013-05-08-learn-to-code-code-to-learn

Let’s Teach Kids to Code, Mitchel Resnick, TED

http://www.ted.com/talks/mitch_resnick_let_s_teach_kids_to_code?language=en 

Education Reform, Brian Aspinall, TEDxChathamKent

https://youtu.be/ngeZPU35zm4

Hacking the Classroom, Brian Aspinall, TEDxKitchenerED

https://youtu.be/UyxfPnO5lgk 

New Frameworks for Studying and Assessing the Development of 

Computational Thinking,

Karen Brennan and Mitchel Resnick, MIT Media Lab

http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf

Scratch is great for creating projects. Friendly for students from K-12, Scratch lets 

students explore computational thinking through creativity and curiosity.  

http://scratch.mit.edu

The Scratch Ed Creative Computing Curriculum Guide has been created at Harvard 

and offers guidance and lesson plans for teaching Scratch in the classroom:

http://scratched.gse.harvard.edu/guide

The mission of Code Club is to give every student and child the opportunity to learn code.  

A bank of step-by-step projects in Scratch, HTML and Python facilitates the creation of 

after school clubs for an increased network and support. http://codeclub.ca/ 

The Hour of Code initiative has sparked interest in coding internationally. This 

section of the site is dedicated to educators at all grade levels who are interested in  

techniques and resources for bringing computational thinking and computer science 

to their classrooms. http://code.org/educate






